

Compiler Design

SWAYAM Prabha Course Code-KCS 502

PROFESSOR'S NAME	Dr Parul Yadav
DEPARTMENT	Computer Science and Engineering
INSTITUTE	IET Lucknow, Uttar Pradesh
COURSE OUTLINE	The objective of the course is to understand the basic phases required for the compilation of any programming language. This will also develop the understanding how the compiler detects and handles the syntactic and semantic errors in a program during compilation.

COURSE DETAILS

S. No	Module ID/ Lecture ID	Lecture Title/Topic
1	Lecture 1	Introduction to Compiler
2	Lecture 2	Phases and Passes
3	Lecture 3	Finite state machines, regular expressions and Optimization of DFA-based Pattern Matches, Bootstrapping
4	Lecture 4	Lexical Analysis and Input Buffering
5	Lecture 5	Lexical Analyzer Generator and Implementation
6	Lecture 6	LEX-compiler and YACC
7	Lecture 7	Formal Grammar, BNF Notation and Ambiguity
8	Lecture 8	The syntactic specification of programming languages: Context free grammars, derivation and parse trees
9	Lecture 9	Eliminating Ambiguity and Left Factoring
10	Lecture 10	Elimination of Left Recursion and Parsing
11	Lecture 11	FIRST, FOLLOW and Constructing Predictive Parsing Table
12	Lecture 12	Predictive Parsing

13		Shift Reduce Parsing
13	Lecture 13	Silite Neduce 1 disilig
14	Lecture 15	Operator Precedence Table
- '	Lecture 14	operator recognition rabite
15	2000010 2 1	Precedence Function and Operator Precedence
	Lecture 15	Parsing
16		LR parsers: the Canonical Collection of LR(0)
	Lecture 16	items
17		Constructing SLR parsing tables and Parsing
	Lecture 17	
18		Constructing Canonical LR parsing tables
	Lecture 18	
19		Shift Reduce Conflicts
	Lecture 19	
20		Syntax-directed Translation schemes,
21	Lecture 20	Implementation of Syntax directed Translator
21	Lastura 21	Intermediate code, postfix notation, Parse Tree and Syntax Tree
22	Lecture 21	Three address code, quadruple, triple and
22	Lecture 22	Translations of Assignment Statements
23	Lecture 22	Boolean expressions
	Lecture 23	Boolean expressions
24		Statements that alter the flow of control, postfix
		translation, translation with a top down
	Lecture 24	Parser
25		Array references in arithmetic
	Lecture 25	Expressions
26		Procedures call, declarations
27	Lecture 26	and case statements
27	Lastina 27	Symbol Tables: Data structure for Symbols Tables
28	Lecture 27	Symbol Tables: Representing Scope Information.
20	Lecture 28	Symbol rables. Representing scope information.
29	LCCIUIC 20	Run-Time Administration: Implementation of
	Lecture 29	Simple Stack Allocation Scheme
30		Storage allocation in block
	Lecture 30	
31		Lexical Phase Errors
	Lecture 31	
32		Syntactic and Semantic Phase
	Lecture 32	Errors
33		Code Generation: Design Issues
	Lecture 33	
34		Target Language Addresses in the Target Code
	Lecture 34	

35		Basic Blocks and Flow Graphs, Optimization of
	Lecture 35	Basic Blocks
36		Code Generator
	Lecture 36	
37		Machine-Independent Optimizations
	Lecture 37	
38		Value numbers and algebraic laws, Global Data-
	Lecture 38	Flow Analysis

References:

- 1. Principles of Compiler Design by Aho and Ullman, Narosa Publication
- 2. Compiler Design Using Flex and YACC by Vinu V. Das, PHI Publication
- 3. Compilers: Principles, Techniques and Tools by Aho, Ullman and Sethi and Monica S. Lam, Pearson Publication
- 4. Compiler Design by V. Raghvan, Tata Mc Hill

Instructor Contact Details:

Dr. Parul Yadav Assistant Professor Department of Computer Science & Engineering, Institute of Engineering & Technology, Lucknow 9838252188

E mail id: parulyadav@ietlucknow.ac.in

Mr. Anmol Jain Assistant Professor Department of Computer Science & Engineering, ABES Engineering College, Ghaziabad Mobile No. 9711919854

E mail id: anmol.jain@abes.ac.in